Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.223
Filtrar
1.
Org Lett ; 26(15): 3263-3266, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38598422

RESUMO

The ability of α-amanitin to potently inhibit RNA polymerase II (RNAP II) has elicited further research into its use as a novel payload for antibody-drug conjugates. Despite this promise, the de novo synthesis of α-amanitin is still a major challenge as it possesses an unusual bicyclic octapeptide structure that contains several oxidized amino acids, most notably 4,5-dihydroxy-l-isoleucine. Here, we report a concise chemoenzymatic synthesis of this key amino acid residue, which features two regioselective and diastereoselective enzymatic C-H oxidations on l-isoleucine.


Assuntos
Alfa-Amanitina , Amanitinas , Alfa-Amanitina/química , Amanitinas/farmacologia , Isoleucina , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
2.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , Modelos Moleculares , RNA Polimerase II , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Ligação Proteica
3.
Biomolecules ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397413

RESUMO

Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/química , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro
4.
Curr Opin Struct Biol ; 84: 102766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181687

RESUMO

RNA polymerase II (Pol II) transcription is regulated by many elongation factors. Among these factors, TFIIF, PAF-RTF1, ELL and Elongin stimulate mRNA chain elongation by Pol II. Cryo-EM structures of Pol II complexes with these elongation factors now reveal some general principles on how elongation factors bind Pol II and how they stimulate transcription. All four elongation factors contact Pol II at domains external 2 and protrusion, whereas TFIIF and ELL additionally bind the Pol II lobe. All factors apparently stabilize cleft-flanking elements, whereas RTF1 and Elongin additionally approach the active site with a latch element and may influence catalysis or translocation. Due to the shared binding sites on Pol II, factor binding is mutually exclusive, and thus it remains to be studied what determines which elongation factors bind at a certain gene and under which condition.


Assuntos
RNA Polimerase II , Fatores de Transcrição TFII , RNA Polimerase II/química , Elonguina/genética , Elonguina/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Sítios de Ligação , Transcrição Gênica
5.
Int J Biol Macromol ; 254(Pt 2): 127881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944716

RESUMO

The carboxyl terminal domain of the largest subunit of eukaryotic RNA polymerase II (RNAPII) consists of highly conserved tandem repeats of Tyr1Ser2Pro3Thr4Ser5Pro6Ser7, referred as CTD. The CTD undergoes posttranslational modifications where the interplay of kinases imparts specific CTD phosphorylations, recognized by regulatory proteins that help in the mRNA transcription. Here, the Ser5 phosphorylation (Ser5P) remains high during the transcription initiation, followed by the Ser2P which peaks towards the termination and the Ser7P remains high throughout the transcription process. The Paf1 elongation complex (Paf1C) through its Cdc73 subunit is recruited to the phosphorylated CTD and play active role during different stages of mRNA transcription. We show that the CTD binding domain of Cdc73 is an independent folding unit which interacts with the hyper phosphorylated CTD. The 500 ns MD simulation studies further identified the binding interface and the pattern of CTD phosphorylation involved in the interaction with Cdc73. The possible key residues were mutated and the subsequent pull down analysis suggests that the phosphorylated Ser2, Ser5 and Ser7 of the tandem CTD heptads interact respectively with Arg310, Arg268 and Arg300 of Cdc73. Our finding provides new insight for Cdc73 function during mRNA transcription.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Science ; 382(6677): eadi5120, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127763

RESUMO

Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.


Assuntos
RNA , Fatores Genéricos de Transcrição , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/química , RNA/biossíntese , RNA Polimerase II/química , Fatores Genéricos de Transcrição/metabolismo , Humanos , Animais , Sus scrofa , Microscopia Crioeletrônica , Filmes Cinematográficos
7.
Int J Biol Macromol ; 253(Pt 7): 127541, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858651

RESUMO

The catalytic subunit of RNA Polymerase II contains a highly conserved carboxy terminal domain (CTD) composed of multiple tandem heptad sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The non-proline residues in CTD undergo posttranslational modifications, with Ser5 phosphorylation (Ser5P) predominating at the start of the transcription cycle and Ser2P at the end, while other phosphorylation levels are high all throughout. The differentially phosphorylated CTD is recognized by regulatory proteins, helpful during mRNA transcription and export. One such protein Npl3 is composed of two RNA binding domains and a C-terminus RGG/SR domain. The Ser411 of Npl3 is reported to make direct contact with Ser2P of CTD for its recruitment and function, while the Npl3 lacking of C-terminal 25 amino acids (Npl3Δ389-414) showed no apparent defects in mRNA synthesis. Here, we report that the RNA binding domains of Npl3 are separate folding units and interact also with the CTD. The interaction between Npl3 and CTD appears to involve not just Ser2P, but also the Ser5P and Ser7P. The Arg126 of the first RNA binding domain interacts with Ser2P whereas the Arg235 of the second RNA binding domain interacts with either Ser7P or Ser5P of another heptad. The finding provides new insight of Npl3 function for mRNA transcription.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fosforilação , Proteínas de Saccharomyces cerevisiae/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Phys Chem B ; 127(43): 9223-9235, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870995

RESUMO

Intrinsically disordered proteins (IDPs) have been closely studied during the past decade due to their importance in many biological processes. The disordered nature of this group of proteins makes it difficult to observe its full span of the conformational space using either experimental or computational studies. In this article, we explored the conformational space of the C-terminal domain (CTD) of RNA polymerase II (Pol II), which is also an intrinsically disordered low complexity domain, using enhanced sampling methods. We provided a detailed conformational analysis of model systems of CTD with different lengths; first with the last 44 residues of the human CTD sequence and finally the CTD model with 2-heptapeptide repeating units. We then investigated the effects of phosphorylation on CTD conformations by performing simulations at different phosphorylated states. We obtained broad conformational spaces in nonphosphorylated CTD models, and phosphorylation has complex effects on the conformations of the CTD. These complex effects depend on the length of the CTD, spacing between the multiple phosphorylation sites, ion coordination, and interactions with the nearby residues.


Assuntos
Proteínas Intrinsicamente Desordenadas , RNA Polimerase II , Humanos , Fosforilação , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Conformação Molecular , Proteínas Intrinsicamente Desordenadas/química , Transcrição Gênica
9.
Infect Genet Evol ; 115: 105505, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748526

RESUMO

The C-terminal domain (CTD) of RNA polymerase II plays a crucial role in regulating transcription dynamics in eukaryotes. The phosphorylation of serine residues within the CTD controls transcription initiation, elongation, and termination. While the CTD is highly conserved across eukaryotes, lower eukaryotes like protists, including Plasmodium, exhibit some differences. In this study, we performed a comparative analysis of CTD in eukaryotic systems to understand why the parasites evolved in this particular manner. The Plasmodium falciparum RPB1 is exceptionally large and feature a gap between the first and second heptad repeats, resulting in fifteen canonical heptad repeats excluding the initial repeat. Analysis of this intervening sequence revealed sub motifs of heptads where two serine residues occupy the first and fourth positions (S1X2X3S4). These motifs lie in the intrinsically disordered region of RPB1, a characteristic feature of the CTD. Interestingly, the S1X2X3S4 sub-motif was also observed in early-divergingeukaryotes like Leishmania major, which lack canonical heptad repeats. Furthermore, eukaryotes across the phylogenetic tree revealed a sigmoid pattern of increasing serine frequency in the CTD, indicating that serine enrichment is a significant step in the evolution of heptad-rich RPB1. Based on these observations and analysis, we proposed an evolutionary model for RNA Polymerase II CTD, encompassing organisms previously deemed exceptions, notably Plasmodium species. Thus, our study provides novel insights into the evolution of the CTD and will prompt further investigations into the differences exhibited by Plasmodium RNA Pol II and determine if they confer a survival advantage to the parasite.


Assuntos
Parasitos , Plasmodium , Animais , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Parasitos/genética , Filogenia , Plasmodium/genética , Serina/genética , Fosforilação , Transcrição Gênica
10.
Int J Biol Macromol ; 253(Pt 2): 126764, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696373

RESUMO

The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/química , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química
11.
Sci Signal ; 16(794): eadg4193, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463244

RESUMO

The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.


Assuntos
RNA Polimerase II , Fatores de Transcrição , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Quinases Ciclina-Dependentes/genética , Regiões Promotoras Genéticas , Transcrição Gênica
12.
Science ; 381(6653): 92-100, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410825

RESUMO

Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.


Assuntos
Cromatina , Microscopia de Fluorescência , Transcrição Gênica , Zigoto , Cromatina/química , Nucleossomos/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Microscopia de Fluorescência/métodos , Animais , Peixe-Zebra , Embrião não Mamífero , Zigoto/metabolismo , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/metabolismo
13.
Mol Cell ; 83(14): 2464-2477.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369200

RESUMO

Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Modelos Químicos
14.
Biol Chem ; 404(8-9): 839-844, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37331973

RESUMO

The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação
15.
Int J Biol Macromol ; 242(Pt 1): 124653, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141964

RESUMO

The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.


Assuntos
Peptidilprolil Isomerase , RNA Polimerase II , Peptidilprolil Isomerase/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Fosforilação , Fatores de Transcrição/genética
16.
Biol Chem ; 404(8-9): 829-837, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37078249

RESUMO

Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.


Assuntos
Complexo Mediador , RNA Polimerase II , Humanos , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica
17.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979361

RESUMO

The specific post-translational modifications of the C-terminal domain (CTD) of the Rpb1 subunit of RNA polymerase II (RNAPII) correlate with different stages of transcription. The phosphorylation of the Ser5 residues of this domain associates with the initiation condensates, which are formed through liquid-liquid phase separation (LLPS). The subsequent Tyr1 phosphorylation of the CTD peaks at the promoter-proximal region and is involved in the pause-release of RNAPII. By implementing super-resolution microscopy techniques, we previously reported that the nuclear Phosphatidylinositol 4,5-bisphosphate (PIP2) associates with the Ser5-phosphorylated-RNAPII complex and facilitates the RNAPII transcription. In this study, we identified Myosin Phosphatase Rho-Interacting Protein (MPRIP) as a novel regulator of the RNAPII transcription that recruits Tyr1-phosphorylated CTD (Tyr1P-CTD) to nuclear PIP2-containing structures. The depletion of MPRIP increases the number of the initiation condensates, indicating a defect in the transcription. We hypothesize that MPRIP regulates the condensation and transcription through affecting the association of the RNAPII complex with nuclear PIP2-rich structures. The identification of Tyr1P-CTD as an interactor of PIP2 and MPRIP further points to a regulatory role in RNAPII pause-release, where the susceptibility of the transcriptional complex to leave the initiation condensate depends on its association with nuclear PIP2-rich structures. Moreover, the N-terminal domain of MPRIP, which is responsible for the interaction with the Tyr1P-CTD, contains an F-actin binding region that offers an explanation of how nuclear F-actin formations can affect the RNAPII transcription and condensation. Overall, our findings shed light on the role of PIP2 in RNAPII transcription through identifying the F-actin binding protein MPRIP as a transcription regulator and a determinant of the condensation of RNAPII.


Assuntos
Actinas , RNA Polimerase II , Actinas/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , RNA Polimerase II/química , Transcrição Gênica , Humanos
18.
ACS Chem Biol ; 18(3): 537-548, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857155

RESUMO

Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semisynthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Transcrição Gênica , RNA Polimerase II/química , Ubiquitinação
19.
Int J Biol Macromol ; 230: 123221, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634798

RESUMO

The transcription factor p53 acted as a critical tumor suppressor by activating the expression of various target genes to regulate diverse cellular responses. The phosphorylation of p53 influenced the binding of p53 to promotor-specific DNA and the choice of cell fate. In this study, we found that full-length wild-type p53 and pol II CTD could form heterotypic phase separation condensates in vitro. The heterotypic condensates of p53 and pol II CTD were mediated by electrostatic and hydrophobic interactions between pol II CTD and multiple domains of p53. The mobility of heterotypic p53 and pol II CTD droplets was significantly higher than that of p53 droplet. The phosphorylation promoted p53 to be recruited into pol II CTD droplets and transcription condensates. The specific DNA could further enhance the incorporation ability of p53 into functional condensates. Therefore, we proposed that the p53 droplet might be in a mediate state, the mutations resulting in p53 mutants with gain-of-function impelled the aggregate of p53, while the phosphorylation promoted p53 to be recruited into functional condensates as a client molecule to exert its function. This study might provide insights into the regulation mechanism that the phosphorylation and nuclei acid affected the phase behavior of p53.


Assuntos
DNA , Proteína Supressora de Tumor p53 , Humanos , Fosforilação , Proteína Supressora de Tumor p53/metabolismo , DNA/genética , DNA/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
20.
Science ; 378(6615): 62-68, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201575

RESUMO

RNA polymerase II-mediated eukaryotic transcription starts with the assembly of the preinitiation complex (PIC) on core promoters. The +1 nucleosome is well positioned about 40 base pairs downstream of the transcription start site (TSS) and is commonly known as a barrier of transcription. The +1 nucleosome-bound PIC-Mediator structures show that PIC-Mediator prefers binding to T40N nucleosome located 40 base pairs downstream of TSS and contacts T50N but not the T70N nucleosome. The nucleosome facilitates the organization of PIC-Mediator on the promoter by binding TFIIH subunit p52 and Mediator subunits MED19 and MED26 and may contribute to transcription initiation. PIC-Mediator exhibits multiple nucleosome-binding patterns, supporting a structural role of the +1 nucleosome in the coordination of PIC-Mediator assembly. Our study reveals the molecular mechanism of PIC-Mediator organization on chromatin and underscores the significance of the +1 nucleosome in regulating transcription initiation.


Assuntos
Complexo Mediador , Nucleossomos , Iniciação da Transcrição Genética , Cromatina/química , Humanos , Complexo Mediador/química , Nucleossomos/química , RNA Polimerase II/química , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...